Поделиться Поделиться

Функції для визначення виплат для погашення позики.

Практична робота № 23

Тема

MS Excel. Фінансові функції.

Мета

Вміти використовувати фінансові функції для аналізу вигід­ності інвестицій в бізнес.

План

1. Функція для визначення майбутньої вартості теперішніх інвестицій.

2. функції для визначення виплат для погашення позики.

3. Функції для визначення теперішньої вартості майбутніх інвестицій.

4. Функції користувача. Створення модуля.

Теоретичні відомості

Фінансові функції використовують для розв'язування задач планування фінансової діяльності, визначення прибутків, аналізу вигідності капіталовкладень, кредитно-інвестиційної політики то­що. Інвестицією називають вкладання грошей у деякий бізнес на певних умовах. Позика у банку називається кредитом, а внесок на рахунок в банк — депозитом. Надходження грошей від деякого бізнесу називають рентою. Розглянемо основні параметри фі­нансових функцій і їхні скорочені назви:

♦ процентна ставка (ПС) виражається у відсотках і може бути добовою, місячною, річною тощо;

♦ кількість періодів (КП) кожний тривалістю доба, місяць, рік;

♦ періодична виплата (ПВ) — сума, яку виплачує клієнт щоперіоду (це від'ємне число), або сума, яку отримує клієнт що-періоду (це додатне число);

♦ сума внеску (СВ) — сума інвестиції, капіталовкладення, початкового внеску (це від'ємне число або нуль);

♦ тип операції (Т) — число 0, якщо виплата здійснюється наприкінці кожного періоду, і число 1, якщо на початку.

Розрізняють кредитну і депозитну процентні ставки. Кредит­на ставка є вищою за депозитну. Процентна ставка повинна бути узгоджена з тривалістю періоду, наприклад, річна ставка 60% дорівнює місячній ставці 5%. У цій роботі вважається, що місяч­на депозитна ставка — 5%, а кредитна — 6% (так було у 1997 p.). Зауважимо, що у 2005 р. ці ставки становили відповідно 1 і 2%.

1. Функція для визначення майбутньої вартості теперішніх інвестицій.Функція має вигляд БЗ(ПС; КП; ПВ; СВ; Т).Англі­йська назва функції FV .

Якщо параметр має значення 0, то його можна не зазначати. Якщо параметр пропускають в середині списку параметрів, то два розділювачі (у цьому випадку ;) мають бути поряд.

Задача 1 . Інвестор вкладає в бізнес 2000 грн (чи відкриває на цю суму рахунок у банку) на умовах 5% ставки прибутку щомісяця. Яка вартість інвестиції через 36 місяців?

Розв'язок задачі дає така формула:

=БЗ(5%;36;;-2000)

Відповідь: 11 583,63 грн.

Зауваження. У цій роботі вважатимемо, що десяткові числа записуються з використанням коми, а не крапки.

Задача 2.Клієнт відкриває рахунок у банку на умовах 5% ставки прибутку щомісяця, кладе на рахунок 2000 грн і планує на початку кожного місяця забирати з рахунку 100 грн. Яка сума буде на рахунку через 36 місяців?

=БЗ(5%; 36; 100; -2000; 1)

Відповідь: 1 520,82 грн.

Задача 3.Умова та сама, але клієнт планує не забирати, а докладати по 100 грн на початку кожного місяця.

=БЗ(5%; 36; -100; -2000; 1)

Відповідь: 21 646,45 грн.

Функція масиву для визначення майбутньої вартості ін­вестиційного капіталу на умовах нарахування різних процентів за певну кількість (до 30) періодів має вигляд БЗРАСПИС(капітал; масив процентів) , але є не у всіх програмах. Англійська назва функції FVSCHEDULE .

Задача 4. Фірма інвестує 2000 грн протягом шести місяців за умови таких щомісячних процентних ставок 7%,6%,5%,4%, 4%,4%. Яка вартість інвестиції через шість місяців?

= БЗРАСПИС(2000; {0,07; 0,06; 0,05; 0,04; 0,04; 0,04})

Відповідь: Shift+Ctrl+Enterдає 2 679,22 грн. Такий бізнес невигідний. Ліпше покласти 2000 грн у банк під 5% на 6 місяців і, нічого не роблячи, отримати Б3(5% ;6;;-2000) = 2 680,19 грн.

Функції для визначення виплат для погашення позики.

Введемо нові терміни і їхні скорочені назви:

♦ номер періоду (НП);

♦ сума позики (СП);

♦ кінцеве значення позики (КЗ).

Функція ППЛАТ(англ. РМТ ) призначена для визначення суми періодичних виплат для погашення боргу і має вигляд ППЛАТ(ПС; КП; СП; КЗ; Т).Така виплата складається з двох частин, які обчислюють за допомогою двох функцій ПЛПРОЦ і ОСНПЛАТ(англ. ІРМТта РРМТ ), а саме:

а)виплата за процентами ПЛПРОЩПС; НП; КП; СП; КЗ; Т);

б)основна виплата ОСНПЛАТ(ПС; НП; КП; СП; КЗ; Т).
Виплата за процентами щоперіоду зменшується, а основна виплата щоперіоду зростає, їхня сума постійна і дорівнює ППЛАТ. Задача 5. Бізнесмен взяв у банку кредит на суму 2000 грн терміном на 12 місяців за умови щомісячного погашення позики і місячної ставки кредиту 6%. Визначити величину щомісячних виплат і Ті складові наприкінці першого місяця.

= ППЛАТ(6%; 12; 2000)

Відповідь: -238,55 грн.

= ШШРОЦ(6%; 1; 12; 2000)

Відповідь: -120,00 грн.

= ОСНПЛАТ(6%; 1; 12; 2000)

Відповідь: —118,55 грн.

Задача 6.Побудувати таблицю значень двох складових ПЛПРОЦ і ОСНПЛАТ щомісячних виплат наприкінці кожного місяця за кредит (2000 грн, 6%) протягом року. Розв'яжіть задачу самостійно.

Розглянемо функціюКПЕР(англ. назва NPER ), яка обчис­лює кількість періодів, потрібних для погашення суми позики, наданої під деяку процентну ставку за умови заздалегідь заданої суми періодичних виплат: КПЕР(ПС; ПВ; СП; КЗ; Т).

Задача 7 . Позику 2000 грн беруть за умови повертання на­прикінці кожного місяця 200 грн і процентної ставки 6%. Скільки місяців потрібно для повертання позики?

=КПЕР(6%; -200; 2000)

Відповідь: 15,73 місяця.

Функція НОРМА(КП; ПВ; СП; КЗ; Т; початкове наближен­ня)визначає вигідність надання позики, тобто реальну процентну ставку від надання позики на певну суму за умови фіксованих періо­дичних виплат протягом деякої кількості періодів. Тут потрібно задати деяке початкове наближення до шуканої процентної ставки, наприклад 0,1 (10%). (Англ.RATE , в російській версії MS Office ХР — СТАВКА ).

Задача 8.Бізнесмен звертається до банку за позикою (кре­дитом) на суму 2000 грн на 12 місяців за умови періодичних виплат 200 грн наприкінці кожного місяця протягом року. Визначити процентну ставку позики.

=НОРМА(12; -200; 2000; 0; 0; 0,1)

Відповідь: 3%. Така позика для банку є невигідною, якщо місячна депозитна процентна ставка, наприклад, 5%. Банк позики не надасть.

3. Функції для визначення теперішньої вартості майбутніх інвестицій.Розглянемо функції для визначення вигідності інвестицій (капіталовкладень) у деякий бізнес.

Депозитна процентна ставка (ДПС) — це ставка, яку банк виплачує за вклади клієнтів.

Функція ПЗ(ДПС; КП; рента за один період; рента в кінці терміну; Т) обчислює сьогоднішню вартість низки майбутніх над­ходжень (ренти) від бізнесу (англ. PV , в рос. MS Office ХР — ПС ).

Для обчислення сьогоднішньої вартості майбутньої ренти використовується принцип дисконтування— приведення суми ренти (доходу) за деякий термін до її вартості в цей момент часу. Суттєво враховується депозитна процентна ставка, оскільки вважається, що вже перше надходження стає депозитом у банку.

Дисконтування дає відповідь на запитання: чи варто вкладати гроші в такий бізнес, чи краще їх поставити в банк під відсотки і нічого не робити.

Задача 9.Нехай для ведення деякого бізнесу потрібно вкласти сьогодні 3500 грн, а бізнес протягом п'яти місяців дава­тиме по 1000 грн доходу (ренти) наприкінці місяця. Депозит­на ставка банку 5%. Чи варто займатися цим бізнесом?

=ПЗ(5%; 5; 1000)

Відповідь: вартість бізнесу (гранично допустима інвестиція) — 4 329 грн. Оскільки цю суму потрібно вкладати, число отри­маємо від'ємне. Бізнес вигідний, бо для його ведення потрібно лише 3 500 грн. Якби потрібно було більше, ніж 4 329 грн, то такий бізнес був би збитковим.

Задача 10.Умова та ж, що й в задачі 9, але ренту (дохід) 4500 грн планується отримати наприкінці терміну. Чи вигідний такий бізнес?

=ПЗ(5%;5;;4500)

Відповідь: сьогоднішня вартість ренти 3 525 грн (отримаємо від'ємне число). Такий бізнес вигідним вважати не можна. Причина — немає змоги реінвестувати ренту.

Розглянемо функцію НПЗ(ДПС;рента1; рента2;...) , яка об­числює сьогоднішню вартість різних рент, що надходять напри­кінці рівномірних періодів (англ.: NPV , в рос. Office ХР — ЧПС ).

Задача 11.У бізнес потрібно вкласти сьогодні 25 000 грн. Наприкінці першого місяця потрібно вкласти ще 2000 грн., а в наступні п'ять місяців бізнес даватиме такі доходи: 4 000,5 000, 6 000, 7 000, 8 000 грн. Чи цей бізнес вигідний?

=НПЗ(5%; -2000; 4000; 5000; 6000; 7000; 8000)

Відповідь: вартість бізнесу 22 433 грн. Оскільки затрати 25 000 грн більші за вартість бізнесу, то такий бізнес невигідний.

Задача 12.Ви маєте сьогодні вкласти у бізнес 25 000 грн і будете вести його протягом п'яти місяців. Методом проб побудувати фінансову модель вигідного бізнесу.

Нехай очікуваний дохід щомісяця відповідно такий: 5000, 6000, 7000, 8000, 9000 — всього 35000. Оцінимо вартість цих рент:

=НПЗ(5%; 5000; 6000; 7000; 8000; 9000)

Відповідь: 29 884 грн. Вартість рент є більшою за інвестицію (25000), тому такий бізнес вигідний.

4. Функції користувача. Створення модуля.Користувач може побудувати власні фінансові чи інші функції і використо­вувати їх як стандартні.

Задача 13.Побудувати функцію для визначення суми в гривнях, яку треба заплатити за деяку валюту згідно з поточним курсом.

FunctionГривні(Валюта, Курс) Гривні = Валюта * Курс

End Function

Покажемо, як користуватися такою функцією. Нехай треба купити 20 доларів по 5,15 грн за долар:

=Гривні(20; 5,15)

Відповідь: 103,00 грн потрібно заплатити в касу.

Для створення власної функції потрібно виконати команди Сервіс о Макрос => Редактор Visual Basic => Вставити => Модуль. Ввести текст функції у вікно модуля, що відкриється, і закрити вікно модуля і вікно редактора.

Хід роботи

Придумати, записати умови і розв'язати 13 задач, подібних до наведених вище. Ваші задачі можуть відрізнятися від описаних лише числами. Зокрема, врахуйте нові поточні депозитні та кредитні ставки банків. Основна грошова сума (інвестиції, вклади, позика, рента), що наявна в умові задачі, визначається дописуванням трьох нулів до номера вашого варіанта. Записати відповідні фінансові функції заздалегідь, залишаючи у звіті два рядки для результатів і висновків, які вписати під час виконання роботи. Під час виконання роботи у стовпець А заносити текст "Задача №...", поряд у стовпець В вводити формули з фінансовими функціями й отримувати результати. У стовпець С вводити висновки: "Вигідно" або "Невигідно".

Контрольні запитання

1. Яке призначення функції БЗ (FV)?

2. Яке призначення функції БЗРАСПИС (FVSCHEDULE)?

3. Яке призначення функції ППЛАТ (РМТ)?

4. Яке призначення функції ПЛПРОЦ (РРМТ)?

5. Яке призначення функції ОСНПЛАТ (ІРМТ)?

6. Яке призначення функції КПЕР (NPER)?

7. Яке призначення функції НОРМА (RATE)?

8. Яке призначення функції ПЗ (PV)?

9. Яке призначення функції НПЗ (NPV)?

10.Яке призначення функції Гривні?

11.Як створити функцію користувача?

12.Які функції використовуються для обчислення теперішньої вартості майбутніх інвестицій?

13.Які функції використовуються для обчислення майбутньої вартості теперішніх інвестицій?

14.Що означає принцип дисконтування?

15.Що таке рента і інвестиція, кредит і депозит?

16.Клієнт відкриває рахунок у банку, кладе 3000 грн на 5% і докладатиме наприкінці кожного місяця 200 грн. Яка сума буде на рахунку через 12 місяців?

17.Чи вигідно 5000 грн інвестувати в бізнес на три місяці, якщо пропонуються ставки доходу 7, 5 і 4%?

18.Підприємець бере позику 5000 грн у банку під 6% місячних терміном на 6 місяців. Визначте щомісячну виплату та її складові у першому і другому місяцях.

19.Підприємець бере позику 4000 грн у банку під 6% місячних терміном на 4 місяців. Визначте щомісячну виплату та її складові у всіх місяцях.

20.Який термін потрібний, щоб повернути банку кредит 3000 грн, взятий під 6% за умови повертання наприкінці кожного місяця 500 грн?

21.Деякий бізнес даватиме щомісяця дохід (ренту) 500 грн про­тягом шести місяців. Яка сьогоднішня вартість ренти?

22.Підприємець планує отримувати ренту протягом 4 місяців: 500, 700, 900 і 1000 грн. Яка сьогоднішня вартість ренти?

23.Побудуйте функцію користувача Сант(дюйми), яка пере­водить дюйми в сантиметри, знаючи, що 1 дюйм= 2,54 см.

24.Побудуйте функцію користувача Вклад(р, m, сума), яка виз­начає величину вкладу деякої суми в банк під р% через m місяців.

25.Обчисліть значення функції Гривні(25; 5,05).





Похожие статьи