Поделиться Поделиться

Фюзеляж: назначение, требования, конструкция основных элементов, компоновка.

Фюзеляж - это основной силовой элемент, к которому крепятся крыло, хвостовое оперение, шасси, двигатели.

Фюзеляж предназначен для размещения экипажа, пассажиров, грузов и оборудования. Масса конструкции фюзеляжа составляет 40%массы всей конструкции самолёта, а а/д сопротивление до 5% полного сопротивления самолёта.

Основные геометрические параметры фюзеляжа:

Lф - длина фюзеляжа;

S мид - площадь миделевого (наибольшего) сечения фюзеляжа.

На а/д характеристики большое влияние оказывает параметр удлинение фюзеляжа - λ.

λ = Lф/Dф - диаметр окружности миделевого сечения фюзеляжа.

Формы поперечного сечения фюзеляжа:

Образованного пересечением двух окружностей Рис.3.1. Формы поперечного сечения фюзеляжа.

Круглого ± Овального


 

С точки зрения а/д, для обеспечения прочности при минимальной массе наиболее выгодным является фюзеляж круглого сечения.

Нагрузки действующие на фюзеляж:

- Мизг и Мкр от крыла и хвостового оперения;

- от масс грузов и агрегатов, расположенных внутри фюзеляжа;

- силы от шасси при посадке;

- воздушные силы;

- перепад давления между гермокабиной (ГК) и атмосферой.

Для восприятия нагрузок фюзеляж состоит из силовых элементов:

- поперечный набор - шпангоуты (шп) - (голл. Spanthout - поперечное ребро жёсткости бортовой обшивки судна между днищем и палубой или фюзеляжа самолёта).

Шп бывают: - усиленные, когда к ним крепятся крыло, шасси, хв.

оперение, двигатели или ограничивающие ГК;

- обычные.

Шп придают заданную форму поперечного сечения, обеспечивают поперечную жёсткость, воспринимают местные нагрузки.

- продольный набор - стрингеры(англ. Stringer- продольное ребро жёсткости

корпуса судна, ЛА.).

Опираются на Шп. Являются опорой обшивки и прикрепляются к шп и обшивке.

В местах вырезов в фюзеляже: ниши шасси, двери, окна, люки вместо стрингеров могут устанавливаться балки силовые - бимсы.

На современных самолётах применяются фюзеляжи балочной конструкции. У них работающая металлическая обшивка, подкреплённая продольным и поперечным набором.

Обшивка состоит из панелей и листов различной толщины от 1,5 мм до 8 мм в местах вырезов в фюзеляже (двери, окна, люки).

Технологически фюзеляж разделён на части:

Ф1 - носовая часть фюзеляжа (НЧФ) - кабина экипажа.

Ф2 - средняя часть фюзеляжа (СЧФ) - пассажирские салоны или

грузовая кабина.

Ф3 - хвостовая часть фюзеляжа (ХЧФ), техническая часть.

Между собой эти части соединены стыковочными шпангоутами.

Ф1 и Ф2 - как правило составляют герметическую кабину. Поэтому она воспринимает усилие перепада давления.

Герметизация обеспечивается с помощью уплотнительных лент (У20А), закладываемых между листами обшивки и деталями каркаса, а затем изнутри кистью промазывается герметиком У30-МЭС-5К.

Входные двери, люки, окна герметизируются резиновыми профилями.

Герметизируются выводы тяг, тросов управления, электропроводки, трубопроводов различных систем.

Для теплозвукоизоляции кабин применяются пористые и волокнистые материалы с малой теплопроводностью (минеральная вата, стекловата, пеностекло).

Теплоизоляционные покрытия служат и звукоизоляцией.

Между обшивкой и облицовкой кабин воздушная прослойка.

Нагрузки действующие на фюзеляж. Массовые. хв о Рис.3.2. Массовые силы действующие на фюзеляж.

qф – распределенная массовая нагрузка от кострукции фюзеляжа

Рэк – нагрузка от членов экипажа Данные нагрузки

Рг - груз или пассажиры уравновешиваются

Рш – нагрузка от шасси подъемной силой

Рдв – нагрузка от двигателей крыла

Рхв.о – нагрузка от хвостового оперения

Силы давления внутри фюзеляжа за счёт перепада давления в ГК.

Ргк - давление внутри гермокабины.

Ра - давление атмосферное.

∆Ргк = Ргк – Ратм => перепад давления в ГК по отношению к атмосферному давлению, которое стремится разорвать фюзеляж.

Рис. 3.3. Силы перепада давления.

На фюзеляж действуют силы от отклонённых рулевых поверхностей:

Руль направления (РН)- через киль; руль высоты (РВ) - через стабилизатор и киль; ЭЛЕРОНОВ - через крыло; ПРЕДКРЫЛКОВ и ЗАКРЫЛКОВ - через крыло - все эти силы создают Мизг и Мкр (изгибаюшие и крутящие) моменты относительно центра тяжести (ЦТ).

Из вышесказанного вытекают требования к фюзеляжу:

- обеспечение достаточной прочности и жёсткости конструкции при минимальном весе;

- рациональные внешние формы и параметры фюзеляжа для минимального лобового сопротивления;

- использовать несущие свойства фюзеляжа до 40% в интегральных схемах;

- максимально использовать полезные объёмы за счёт увеличения плотности, компоновки и размещения грузов вблизи центра массы (ЦМ)

Это даёт:

1. Масовые моменты инерции – ↓Ji;

2. Улучшаются маневренные характеристики;

3. Уменьшается диапазон центровок;

4. Даёт большую стабильность и управляемость.

- согласованность силовой схемы фюзеляжа с силовыми схемами присоединённых агрегатов (крыла, шасси, хвостового оперения);

- обеспечивать: - удобство входа и выхода экипажа и пассажиров, погрузки и разгрузки грузов, надёжности швартовки;

- создание необходимых условий жизнеобеспечения и комфорта;

- обеспечение быстрого и безопасного аварийного покидания самолёта.

- 3.2. Крыло: назначение, требования, конструкция основных элементов, компоновка.

Основными элементами крыла являются:

  • обшивка,
  • лонжероны,
  • продольные стенки,
  • стрингеры,
  • нервюры.

Крыло - это основная часть самолёта, создающая при движении его в воздухе подъёмную силу и обеспечивает поперечную устойчивость самолёта.

На концевых частях крыла расположены органы поперечного управления - элероны.

( франц. Aileron от aile - крыло) это подвижная часть крыла, служит для управления по крену самолётом.

Элероны синхронно отклоняются в противоположные направления: если левый - вверх, то правый - вниз.

При этом происходит перераспределение а/д нагрузки по размаху крыла, что приводит к созданию момента крена самолёта.

Для улучшения взлетно-посадочных характеристик (ВПХ) самолёта крыло современного самолёта снабжается предкрылками и закрылками. Эти устройства называются средствами механизации крыла.

Перед закрылками устанавливают интерцепторы, которые в полёте обеспечивают ↓У и ↑X и как результат используют для ↓V и ↓Н полёта, а после приземления для уменьшения длины пробега ( ↓Lnp).

Kpыло технологически разделено на: - ЦП - центроплан;

- СЧК - средняя часть крыла;

- ОЧК - отъёмная часть крыла.

К крылу могут крепиться двигатели, главные опоры шасси. Внутренние объёмы крыла используются для размещения топлива.

На крыло в полёте, при взлёте и посадке самолёта действуют нагрузки: - а/д нагрузки qв распределённые по поверхности крыла;

- от массы конструкции крыла q кр- распределённые массовые

нагрузки;

- от массы агрегатов размещённых в крыле - сосредоточенные

нагрузки Р агр;

- силы тяги Рдв и веса Рсу двигателей, ударные нагрузки от шасси

Рш при посадке самолёта;

- инерционные массовые силы при совершении маневров.

Рис. 3.3. Силы действующие на крыло.

Конструктивными элементами крыла являются:

- Лонжероны - (франц. Longeron - от longer - идти вдоль) основной силовой элемент конструкции расположенный по длине размаха крыла.

Это балка, воспринимающая Мизг и Q (поперечную силу), которая в сечении имеет вид: - швеллера ( нем. Schweiier - профиль).

- двутавр.

Состоит из верхнего и нижнего поясов, связанных между собой стенкой. Пояса воспринимают сжатие или растяжение.

Крыло бывает: однолонжеронной конструкции

многолонжероннои конструкции

двухлонжеронной конструкци

Стрингеры - продольный набор опирающийся на нервюры и

скреплённые с обшивкой служат для восприятия осевых усилий растяжения и сжатия при изгибе крыла.

Через обшивку они воспринимают местные а/д нагрузки. В сечении стрингер представляют профили П – Z – Г- образный.

Нервюры - (франц. Nervure) - поперечный силовой элемент каркаса

определяющий форму профиля крыла, обеспечивающий восприятие а/д нагрузки с обшивки и стрингеров, передачу её на лонжероны.

Нервюры бывают: - силовые - к ним крепятся узлы навески элеронов,

интерцепторов, закрылков и предкрылков; усиленные - воспринимают сосредоточенные нагрузки от агрегатов; - обычные.

Обшивка - является наружной оболочкой каркаса крыла и служит для придания обтекаемой формы и передачи а/д нагрузок на каркас крыла.

На современных самолётах обшивка выполняется из алюминиевых сплавов и является работающей.

Работающей называется такая обшивка, которая воспринимает аэродинамические нагрузки и передает их на каркас крыла.

В крыльях кессонных конструкций обшивка со стрингерами выполнена в виде панелей путём химического фрезерования или клепаным способом.

Обшивка стрингеры лонжерон

Рис. 3.4. конструкция кессона.

Кессон - (франц. Caisson - ящик) - воспринимающий усилия, действующие на крыло самолета.

Объем используется для размещения топлива на самолёте и вес топлива разгружает крыло в полёте.

3.2.1. Механизация крыла.

Механизация крыла - это система устройств (закрылки, предкрылки,

интерцепторы, спойлеры, тормозные щитки) предназначенные для управления подъёмной силой У и лобовым сопротивлением X самолёта, улучшая взлётно-посадочные характеристики (ВПХ).

Рост скоростей полёта самолёта, которым сопровождается развитие авиации, влечёт за собой рост взлётно-посадочных скоростей, что усложняет технику пилотирования и требует увеличения длины взлетно-посадочной полосы (ВПП).

Основным способом улучшения ВПХ является оснащение крыла мощной механизацией.

Задача механизации крыла:

- при взлёте - создание наибольшей подъёмной силы У без значительного увеличения лобового сопротивления X;

- при посадке - наибольшей подъёмной силы У и наибольшего лобового сопротивления X;

- улучшение маневренных характеристик и активного парирования перегрузок, возникающих во время полёта.

Минимальная скорость полёта соответствует полёту на околокритических углах

атаки при Су ≈ Су max


Зависимость Су= f( α) для различных видов механизации.

1. Крыло без механизации.

2. Крыло с предкрылком.

3. Крыло с щелевым закрылком.

4. Крыло с щелевым закрылком и предкрылком.

К основным видам механизации крыла относится :

- закрылки;

- предкрылки;

- интерцепторы;

- щитки.

Требования к механизации крыла:

- максимальное ↑Суαпри отклонении средств механизации в посадочное положение при посадочных углах атаки α самолёта;

- минимальное ↑Схαв убранном положении средств механизации;

максимальное качество Кпри разбеге самолёта и возможное ↑Суα при отклонении средств механизации во взлётное положение;

- возможно меньшее изменение смещения центра давления (ЦД) крыла при отклонении

ВПМ ( взлётно - посадочной механизации);

- синхронность действий ВПМ на обеих консолях крыла;

- простота конструкции и надёжность работы.

Факторы увеличивающие несущую способность крыла и тем самым улучшающие ВПХ самолёта достигаются:

- увеличением эффективной кривизны профиля крыла при отклонении

средств механизации;

- увеличением площади крыла;

- управлением пограничным слоем для безотрывного обтекания

верхней поверхности крыла и затягивания срыва на бОльшие углы атаки за счёт скорости пограничного слоя: - эффектом щелей;

- отсосом пограничного слоя.

Улучшение взлетно-посадочных характеристик самолета и, прежде всего, снижение его посадочной скорости и скорости отрыва на взлете обеспечивается применением средств механизации крыла. К этим средствам относятся устройства, позволяющие изменять несущую способность и сопротивление крыла. Они могут устанавливаться по передней кромке крыла - предкрылок, отклоняемый носок, по задней кромке - щитки, закрылки (одно-, двух-, трехщелевые) и на верхней поверхности крыла - тормозные щитки и гасители подъемной силы.
Закрылки, щитки, предкрылки перед посадкой отклоняются (и выдвигаются) на максимальные углы, обеспечивая прирост несущей способности крыла (СS) за счет увеличения кривизны профиля, некоторого увеличения площади крыла и за счет щелевого эффекта. Рост несущей способности крыла уменьшает посадочную скорость самолета. На взлете эта механизация отклоняется на меньшие углы, обеспечивая некоторое увеличение несущей способности при незначительном росте сопротивления, в результате чего сокращается длина разбега самолета. Тормозные щитки и гасители подъемной силы обычно отклоняются на пробеге, обеспечивая резкое падение подъемной силы крыла, что позволяет более интенсивно использовать тормоза колес и сокращать длину пробега. На величину посадочной скорости и скорости отрыва они не влияют. Тормозные щитки и гасители подъемной силы также могут использоваться в полете для уменьшения аэродинамического качества и увеличения угла планирования при снижении.

На рисунке цифрами обозначены:
1 - предкрылки, 2 - закрылки, 3 - гасители подъемной силы- интерцепторы, спойлеры , 4 - тормозной щиток, 5- элерон.

Щитки представляют собой отклоняемые вниз поверхности, расположенные в нижней части крыла. В неотклонённом положении щитки вписываются в контур профиля крыла. Угол отклонения до 60°.

отклоняемый выдвижной


Рис. 3.6. Схема крепления щитка.

При отклонении щитка искривляется профиль крыла, происходит отсос воздуха в область пониженного давления за щитком и увеличивает разряжение на верхней поверхности крыла. Одновременно под крылом давление повышается вследствие его затормаживания щитком. В результате ↑Су и ↑Сх.

Щитки дают возможность увеличить угол планирования, сократить посадочную дистанцию и длину пробега.

Закрылок - это профилированная подвижная хвостовая часть крыла, выдвигающаяся назад - вниз.

Типы закрылков: - однощелевые;

- двухщелевые;

- трёхщелевые раздвижные.

Хорда закрылков составляет 30 - 40 % хорды крыла.

Рис.3. 7. Двухщелевой закрылок.

Повышение коэффициента Су у крыла происходит вследствии:

- увеличения вогнутости крыла;

- увеличения площади крыла;

- организации безсрывного обтекания крыла.

Так как закрылок отклоняется вниз, то увеличивается вогнутость, одновременно выдвигается назад и увеличивается хорда, а значит, площадь крыла SKP.

Применение щелевых закрылков создаёт между крылом и закрылком профилированную щель, через которую воздух устремляется из области повышенного давления под крылом в область пониженного давления над крылом. При этом сдувается пограничный слой с верхней стороны закрылка и отсасывание его.

Элементы конструкции закрылка:

- лонжероны, нервюры, стрингеры, обшивка;

- каретки и рельсы;

- винтовые подъёмники, которые служат для перемещения закрылков.

В трёхщелевом закрылке: - дефлектор;

- силовая центральная часть;

- хвостик.

Предкрылки - это профилированный подвижный элемент крыла, расположенный в носовой части крыла по всему размаху, либо на концевых его частях против элеронов (концевой предкрылок).

Предкрылок имеет: эл. обогрев -Ту-154; воздушно-тепловой - Ил-76. Состоит из секций.

Предкрылок обеспечивает возможность реализации прироста Суα, даваемого средствами механизации, повышает эффективность элеронов на больших углах атаки α и повышает поперечную устойчивость самолёта (при стреловидных крыльях).

Тип: - отклоняемые носки;

- выдвижные с образованием щели между крылом и предкрылком.

Конструкция: - лонжерон, нервюры, обшивка, рельсы, каретки, винтовые преобразователи.

Рис. 3.8. Предкрылок.

Предкрылки могут управлятся пилотом или автоматически. Предкрылки выдвигаются вперёд и вниз и при этом:

- увеличивается площадь крыла Skp и кривизна профиля;

- образуется щель и выходящая струя из щели с большой скоростью

прижимает воздушный поток к верхней поверхности крыла Использование предкрылков увеличивает на 40-50% Су max за счёт увеличения критического угла атаки (αкр.)

Интерцепторы это подвижные части крыла в виде профилированных щитков (пластин), расположенные на верхней поверхности крыла перед закрылками и служащие для управления подъёмной силой.

Интерцепторы (спойлеры), с точки зрения а/д, это гасители подъёмной силы, тормозные щитки, отклоняющиеся вверх симметрично на обеих консолях крыла, вызывая срыв потока, за счёт этого уменьшается подъёмная сила и увеличивается лобовое сопротивление, а в убранном положении утоплены в крыло. В элеронном режиме вверх отклоняется только тот, где отклонился элерон вверх, при этом создаётся крен самолёта , т.е. увеличивается эффективность элеронов.

Рис. 3.9. Интерцептор. Конструкция: Секции из панелей стыкованные кронштейнами. Имеют лонжерон, нервюры, узлы навески.

Интерцепторы применяются в полёте и на земле. В полёте для изменения эшелона полёта, т. ↓H и ↓V. На земле для ↑Х (лобового сопротивления) и как следствие ↓L пробега после приземления.

В настоящее время разработаны энергетические средства механизации крыла, в которых используется сжатый воздух, подаваемый от компрессоров двигателей или специальных вентиляторов.

Улучшение а/д характеристик крыла достигается:

- управлением пограничным слоем за счет отсоса или сдува с верхней поверхности крыла, предкрылков и закрылков через специальные отверстия, щели, пористые поверхности;

- применением струйно-реактивного закрылка – профилированной щели вдоль задней кромки крыла, через которую назад и вниз выбрасывается струя воздуха.

Она эжектирует окружающий воздух, увеличивает скорость обтекания крыла, создает дополнительную силу за счет вертикальной составляющей реактивной тяги воздушной струи.

Рис. 3 .10. механизация крыла.

На современных самолётах , как правило , применяется комплексная механизация крыла, т.е. сочетание различных видов механизация крыла, т.е. сочетание различных видов механизации.

Элероны это подвижные части крыла, расположенные у задней кромки крыла на его концах и отклоняемые одновременно в противоположные стороны (один элерон вверх, а другой - вниз) для создания крена самолёта.

Предназначены элероны для управления самолётом относительно его продольной оси ОХ. Управление производится штурвалом пилота.

Требования к элеронам: обеспечение эффективности управления по крену на всех режимах полёта. Это достигается:

- исключением заклинивания элеронов при изгибе крыла в полёте;

- весовой балансировкой элеронов;

- уменьшением шарнирных моментов (за счёт а/д компенсации); уменьшением дополнительного сопротивления в отклонённом и убранном положениях;

- уменьшением момента рыскания при отклонении элеронов;

- применение элерон-интерцепторов;

- применение дифференциально отклоняемых половин стабилизатора. Конструкция элеронов : форма аналогичная крылу и состоит из каркаса и обшивки.

Каркас: лонжерон, стрингера, нервюры, диафрагмы и обшивка.

Органы управления на крыле
На концах крыла в хвостовой его части шарнирно подвешиваются элероны, которые обеспечивают управление и балансировку самолета по крену.

Правый и левый элероны отклоняются в противоположные стороны и за счет разницы в подъемной силе крыльев создают момент крена. У самолетов, имеющих крылья большого удлинения и высокие околозвуковые скорости полета, эффективность элеронов падает из-за проявления аэроупругого явления, получившего название реверс (обратная работа) элеронов. Суть его связана с тем, что изменения подъемной силы, вызванные отклонением элеронов, закручивают крыло и изменяют его угол атаки, что приводит к появлению новых приращений подъемной силы, которые направлены в противоположные по отношению к силам, создаваемым элеронами, сторону. В результате уменьшается кренящий момент самолета, что летчиком ощущается как снижение эффективности элеронов с ростом скорости полета. В конечном счете при определенной скорости полета, называемой критической скоростью реверса, элероны полностью перестают работать, а на более высоких скоростях создают кренящий момент обратного знака. Устранить обратную работу элеронов и уменьшить деформации кручения крыла при их отклонении можно или переносом элеронов с конца крыла в среднюю его часть, или сокращением размеров, прежде всего размаха, элеронов. В том и другом случае эффективность элеронов снижается. Компенсировать падение эффективности можно установкой дополнительных поверхностей управления по крену - интерцепторов . Интерцептор представляет собой щиток, шарнирно закрепленный на верхней поверхности крыла, который дополнительным приводом синхронно с идущим вверх элероном отклоняется также вверх и, вызывая интенсивный срыв потока на крыле, увеличивает кренящий момент самолета. При отклонении элерона вниз интерцептор прижат к крылу и не работает. Такие интерцепторы принято называть элеронными или элерон-интерцепторами. Их не следует путать с тормозными интерцепторами - гасителями подъемной силы, которые отклоняются синхронно на левом и правом крыльях и служат для симметричного срыва подъемной силы, что в полете может использоваться для увеличения крутизны траектории снижения, а на пробеге для увеличения нагрузки на колеса шасси и более интенсивного их торможения.
Описание конструкции элеронов приводится в разделе «Оперение».

Хвостовое оперение.

Хвостовое оперение (Хв.О) состоит из вертикального (ВО) и горизонтального (ГО) оперения.

Вертикальное оперение включает киль – неподвижная часть, и руль направления (РН) – подвижная часть. Впереди киля на фюзеляже может быть установлен форкиль для увеличения площади киля и его эффективности. Горизонтальное оперение включает неподвижную часть – стабилизатор, и подвижную – руль высоты.

Хвостовое оперение самолетов бывает нескольких видов: обычное, когда киль и стабилизатор установлены на фюзеляже самолета, и Т-образное, когда стабилизатор крепится к верхней части киля.

У скоростных самолетов, имеющих стреловидное крыло, стреловидность ВО и ГО превышает стреловидность крыла для того, чтобы несущие характеристики Хв.О с увеличением числа М не ухудшались быстрее, чем характеристики крыла.

Кроме того, на некоторых транспортных самолетах устанавливают Хв.О двухкилевое или трехкилевое. Это делается для увеличения эффективности ВО и уменьшенич габаритов самолета.

Параметры хвостового оперения:

ℓ - размах ГО;

h - высота ВО;

Хво – угол стреловидности ВО;

Хго - угол стреловидности ГО.


Похожие статьи