Поделиться Поделиться

Множинна кореляція

До цих пір розглядалися моделі простої кореляції, тобто кореляційної залежності поміж двома ознаками. Проте в практиці економічного аналізу часто доводиться вивчати явища, які складаються під впливом не одного, а багатьох різних факторів, кожний з яких окремо може не справляти вирішального впливу. Сукупний же вплив факторів інколи виявляється достатньо сильним, щоби по їх змінах дозволяється було робити висновки про величини показника досліджуваного явища. Методи вимірювання кореляційного зв'язку одночасно поміж двома, трьома і більше кореляційними ознаками створюють вчення про множинну кореляцію (питання множинної кореляції вперше досліджувались англійським вченим Ф.А.Еджвортом у кінці XIX ст.).

У моделях множинної кореляції залежна змінна "У" розглядається як функція кількох (у загальному випадку п) незалежних змінних "х".

Припущення про наявність лінійного зв'язку рівняння множинної регресії може бути показано в такому вигляді:

У*,*, = оі0 + а1х1 + ос2х2 + а3х3 +... + сспхп

Із геометричної точки зору це рівняння визначає у просторі площини відповідних змінних Х1,X2,Xз,...,х" і у.

Множинне кореляційне рівняння встановлює зв'язок поміж досліджуваними ознаками і дозволяє вирахувати очікувані значення результативної ознаки під впливом включених в аналіз ознак -факторів, зв'язаних даним рівнянням .

Для оцінки ступеня тісноти зв'язку поміж результативною і факторними ознаками обчислюють коефіцієнт множинної кореляції. Величина його завжди додатне число, яке знаходиться в межах від 0 до 1.

У множинних кореляційно-регресійних моделях коефіцієнт простої кореляції поміж результативною ознакою і факторними, а також поміж самими факторними ознаками розраховують за формулами:

парні -

ух' у х2 х1 Х2

гух1 - гух2 ■ гх1 х2 гух2 - гух1 ■ гх1 х2

гух1 ■ х2 = і = і 2 ; Гух2 ' х1 = І = І 2 ;

чаСТКОВІ - л'1 ~ г Ух^1 ~ г х1 х2 V1 - г ух^1 - г х1 х2

Множинні (для двофакторної моделі):

Кууа =уі 1 -(1 - г2>'л1)(1 - г2ух2 ■ х1)

Оцінку вірогідності множинного коефіцієнта кореляції (так як і кореляційного рівняння в цілому) одержують шляхом розрахунку Б -критерію :

р Р -1 п - Р

де Р- кількість параметрів кореляційного рівняння.

Розрахункові значення Б - критерію зіставляють з табличними (додатки 3,4). Коли одержана величина Б - критерію більше його табличного значення, коефіцієнт кореляції визнається вірогідним. Аналогічний висновок робиться по інших загальних характеристиках кореляційної моделі, таким як параметри рівняння, коефіцієнти детермінації та ін.

Загальнотеоретичні передумови застосування методів кореляційно-регресійного аналізу економічних явиш

Розгляд природи основних статистико - математичних методів і теоретичних передумов їх застосування в економічному аналізі почнемо зі стверджуючого припущення, що функціональні зв'язки в галузі економіки відсутні. Як уже було сказано раніше при функціональній залежності кожному конкретному значенню аргумента відповідає одне конкретне значенню функції. Такі залежності в абсолютно чистому вигляді демонструються абстрактними математичними формулами. В конкретних же економічних явищах, які зумовлюються множинністю причин, присутні неповні зв'язки чи кореляційні. їх також прийнято називати статистичними. Багатозначність цих зв'язків породжується випадковими явищами.

Існують також підстави припустити, що економічні показники не обов'язково підпорядковуються закону нормального розподілу. Наприклад, відомі англійські вчені - статистики, які мають богатий досвід дослідження статистичних зв'язків, Е.Юл. і М. Дж. Кендел у частині закону нормального розподілу наводять слова К.Пірсона: "Даний закон не є загальний закон природи, ми повинні буквально полювати за подібними випадками"4.У працях Е.Юла є твердження, що в економічній статистиці дуже важко підібрати навіть дві взаємопов'язані змінні, які характеризуються симетричним розподілом. Хоча потрібно сказати, що з проникненням статистики в галузь технологічних процесів (особливо промислового виробництва) відкрито немало розподілів, близьких до нормального.

Говорячи про природу кореляційно - регресійного методу, потрібно пам'ятати, що кореляційні розрахунки є чисто математичним прийомом, що зовсім не виявляють фізичну картину взаємозв'язків . Одержана на основі цього прийому числова оцінка зв'язків і залежностей інколи виявляється формальною, що показує лише поверхню явищ. Незнання даної особливості методу веде за собою неправильне користування ним. Коли до цього ж порушуються правила формування статистичних сукупностей, то дослідник потрапляє в полон логічних помилок, викликаних несправжньою кореляцією. На жаль, до цього часу завершеної теорії несправжньої кореляції не створено, незважаючи на те, що вона невід'ємна від природи кореляційного аналізу.

Кореляція в її формально - статистичному розумінні не розкриває причин зв'язку, а констатує лише його наявність, даючи оцінку сили і тісноти, встановлює ступінь вірогідності міркувань про наявність такого. Разом з регресійним кореляційний аналіз вирішує такі завдання: оцінка сили зв'язку і її кількісне вимірювання,

Юл Е., Кендєл М.Дж. Теория статистики. М.: Росстатиздат, 1960.- С.225.

визначення форми зв'язку і реальності його існування. При вивченні економічних явищ дослідник, керуючись правилами кореляційно -регресійного аналізу, насамперед повинен виходити з економічного змісту досліджуваних залежностей. Лише після цього може бути встановлений їх причинно - наслідковий характер. Одержані результати розрахунків поширюються лише на ті об'єкти, кількісні характеристики яких включені в розрахунки. Звідси кореляційний аналіз повинен задовольняти вимогам об'єктивності на противагу формально - логічному підходу.

Приймаючи на озброєння методи кореляцій і регресій, необхідно обмежити дослідження від внесення в них викривлень, породжених суб'єктивною природою методів.Нерозуміння чи недооцінка її, як правило, призводить до необґрунтованості висновків, суб'єктивізму в рішеннях, помилок в підборі одиниць спостережень і планування дослідження, а також до того, що досліджуваний зв'язок ставиться в залежність від обставин, що не мають до нього об'єктивного відношення.

Застосування теорії кореляції вимагає знання, насамперед, природи показників тісноти зв'язку.

Відомо, що в економічних дослідженнях твердо встановилась думка про можливість використання коефіцієнтів парної кореляції як свого роду критерію оцінки впливу відібраних факторів в парних і множинних моделях на результативну ознаку. Тобто, мова йде про те, що ряд економістів вважають високу абсолютну величину коефіцієнтів кореляції ознакою наявності сильного причинного зв'язку поміж явищами. Це методичне положення не завжди під собою має об'єктивну основу, природа двох змінних величин не виключає існування стохастичних зв'язків, які, полягають у через те, що можливі значення однієї змінної мають імовірності, які в змінюються залежно від значення, прийнятого іншої змінною. Проте останнє не вказує на наявність причинного зв'язку, хоча коефіцієнт кореляції може досягти при цьому значної величини.

У спеціальній літературі по теоретичній математиці про можливості трактування коефіцієнта кореляції як міри тісноти зв'язку говориться з обережністю. В економічній же літературі цього не спостерігається. Хоча майже всі автори - економісти повторюють слова математиків з теорії ймовірностей про необхідність обережного трактування величин коефіцієнтів кореляції, вони практично ігнорують це положення. Дійсно, в теорії імовірності коефіцієнт кореляції вводиться як параметр, дійсність величини якого вказує на наявність стохастичного зв'язку, проте не визначає міри причинного зв'язку. Так, А. Хальд писав: "Визначивши коефіцієнт кореляції і перевіривши потім гіпотезу про нульову кореляцію, дозволяється інколи довести існування стохастичного зв'язку поміж змінними. Проте необхідно підкреслити, що стохастична залежність не вказує з необхідністю на наявність функціонального зв'язку5. Коефіцієнт кореляції хоч і може вказувати на стохастичний зв'язок поміж х1 і х2, проте при допомозі його не дозволяється визначити, чи є велична х1 причинно обумовленою величиною х2, чи х2 - величиною х1 , чи ж їх зв'язок пояснюється тим, що обидві вони причинно зумовлені іншими факторами. Таким чином, і при значному коефіцієнті кореляції для визначення функціонального зв'язку потрібне додаткове дослідження. При подальшому дослідженні, яке передусім повинно ґрунтуватися на знанні особливості проблеми, регресійний аналіз часто грає важливу роль як засіб перевірки зроблених гіпотез"6.

Іноді створюється помилкове враження присутності тісного стохастичного зв'язку і відсутності причинного поміж явищами стохастично і причинно незалежними. Про це також говориться у наведеній вище роботі А.Хальда: "В той час як стохастична незалежність може ховати причинний зв'язок, дві події можуть бути стохастично залежними, навіть коли вони причинно (функціонально) незалежні"7. Тут мається на увазі той випадок, коли дві події стохастично і причинно незалежні, проте кожна з них окремо залежить від третьої . У такому випадку дві події часто здаються стохастично залежними, коли їх зв'язок з третьою не помічений.

Це також раз підкреслює відмінності понять стохастичного і причинного зв'язку, а звідси і необхідність особливо старанного економічного усвідомлення зв'язків явищ, для визначення ступеня тісноти яких використовується коефіцієнт кореляції. Свою точку зору в цій частині А.Хальд визначив так: ... зміст, котрий може мати коефіцієнт кореляції, за винятком чисто описувального, залежність від знання особливостей походження зв'язку поміж величинами. Коефіцієнти кореляції можуть опинитися, таким чином, небезпечною зброєю при аналізі спостережень даних, оскільки вони можуть вести

5 Під функціональним зв'язком А. Хальд в даному випадку розумів причинний зв'язок

6 Хальд А. Математична статистика з технічними додатками : Пер. з англ. - М.: Вид-во інозем. Літ., 1956 .- 584 с.

7 Там само

до змішування стохастичного і функціонального взаємозв'язків і таким чином до помилкових висновків"8.

Показники тісноти зв'язку (коефіцієнт кореляції, кореляційне відношення і та ін.), як уже було сказано, будуються для явищ, які прямо чи непрямо піддаються дії складної комбінації взаємосплетених причин. Назвемо даний комплекс "умовами", в яких дане явище існує. Результати дії умов на явища висловлюються в формі хаотично змінюваних за напрямком і силою коливань величини явища біля певного рівня (постійного чи змінюючого). Загальну характеристику комплексної дії умов дає пропонований теорією ймовірності ознака середнього квадратичного відхилення

Він таким чином вимірює не самі умови, а потужність їх впливу на явища. Коли дослідженням охоплено два економічних явища, які мають сумісні (хоч би частково) умови, то ця спільність умов призводить до деякої подібності коливань обох явищ. З допомогою середньоквадратичного відхилення дозволяється оцінити силу дії тієї частини умов, яка є загальною для даних явищ і порівняти її з загальною дією умов для аналізованих явищ. Ця логічна схема веде до природи показника тісноти зв'язку - кореляційного відношення.

Дослідник, котрий використовує в економічному аналізі показники тісноти зв'язку, повинен пам'ятати, що коефіцієнт кореляції являє собою тільки спрощений спосіб обчислення кореляційного відношення для випадку прямолінійного зв'язку. Оскільки природа показників зв'язку нероздільна із середньоквадратичним відхиленням, пізнавальна значимість показників зв'язку обмежена тими "умовами", які формують дане середньоквадратичне відхилення. Через те поширення висновків на другі недослідженні випадки (вище говорилось про їх можливу наявність) правомірно лише настільки, наскільки вивчені умови типові і повторюються в координатах простору і часу. Для економічних досліджень це обмеження може бути подолане знову таки шляхом проникнення у зміст самого показника зв'язку. А природа показника кореляції така, що він дає лише вихідну інформацію для висновків про причинні зв'язки. Коли розподіл однієї з змінних кореляційної моделі не може бути охарактеризований за допомогою середньоквадратичного відхилення через слабку варіацію явищ, то в цьому випадку втрачає зміст вирахування коефіцієнта кореляції і кореляційного відношення.

8 Хальд А. Математична статистика з технічними додатками : Пер. з англ. - М.: Вид-во інозем. Літ., 1956 .- С.585.

Такі випадки зустрічаються тоді, коли в комплексі причин, що формують варіацію, окремі з них проявляються у формі еволюторної чи періодичної послідовності в часі чи просторі. Коли динаміка ряду не очищена від таких компонентів, вимірювання сили зв'язку втрачає зміст.

Таким чином, використання коефіцієнта простої кореляції як критерію оцінки вірності підбору факторів для моделі множинної регресії не завжди виправдане. Даний статистичний ознака вимагає особливої обережності використання його в ролі критерію, оскільки взаємозв'язок одних і тих же факторів з урахуванням і без урахуванням впливу інших причин може проявитися по-різному. А парна залежність ігнорує дію інших факторів, приписуючи її повністю тільки одному. Через те найбільш методично обґрунтованим буде визначення не тільки парних, проте й часткових коефіцієнтів кореляції. Часткова кореляція дозволяє виконувати більш глибоке дослідження зв'язків поміж явищами, даючи можливість виділити вплив в окремо конкретних причин на зміну величини результативної ознаки.

В економічних дослідженнях частковою кореляції майже не користуються, а обмежуються парною і множинної. Поміж тим природа часткового коефіцієнта кореляції розкриває дійсним зв'язок і взаємозалежність окремих факторів, котрий міг би виявитися затушованим при використанні лише коефіцієнтів парної кореляції. Так, при вивченні коливань врожайності картоплі в сільгосппідприємствах (101 господарство) було відібрано три фактори, які з економічної точки зору найбільш вагомо визначають варіацію рівня врожайності - це кількість внесених мінеральних добрив на одиницю площі, якість землі і рівень фондозабезпеченості (табл. 55).

Парні коефіцієнти, як видно з даних таблиці, вказали на наявність слабкого (0,227 - 0,276) кореляційного зв'язку врожайності з досліджуваними факторами. Проведена перевірка їх істотності при порозі ймовірності 0,99 підтвердила вірогідність факторів удобреності ґрунтів і фондозабезпеченості (доповнення 11).

У цілому для моделі статистичні характеристики тісноти зв'язку, одержані на підставі парної кореляції, наводять на сумнів в частині категоричності їх трактування. Економічна природа даної залежності залишає бажати наявності більш тісного зв'язку досліджуваних змінних з результативним показником урожайності. Це побуджує продовжити дослідження вибраних факторів, виявити їх чистий вплив, розрахувавши коефіцієнти часткової кореляції в розрізі досліджуваних факторів. Напротивагу показникам парної кореляції, значення часткових коефіцієнтів кореляції (табл. 55) вказує на істотний тісний зв'язок факторів з результативною ознакою. Це відповідає висловленим теоретико - логічним припущенням.

Одержані коефіцієнти часткової кореляції дозволили виявити чистий вплив всіх розглядуваних факторів при постійності інших, що відповідає меті дослідження залежностей складних економічних явищ.

Таблиця 55

Характеристики парної, часткової і множинної кореляції факторів з _показниками врожайності картоплі_

Незалежні змінні (фактори)

Коефіцієнти кореляції

Коефіцієнти регресії

парної часткової

парної множинної

Внесено мінеральних добрив на 1 га ріллі, ц діючого речовини

(Х1)

0,268

0,885

12,151

12,284

Якісна оцінка землі в балах (х2)

0,227

0,778

0,819

0,958

Вартість основних виробничих фондів на 1 га ріллі, грн. (х3)

0,276

0,882

0,084

0,098

← Предыдущая страница | Следующая страница →