Поделиться Поделиться

Операции с выделенными переменными

Для ряда операций надо знать, относительно какой переменной они выполняются. В этом случае необходимо выделить переменную, установив на ней маркер ввода. После этого становятся доступными следующие операции подменюПеременные :

Вычислить - найти значения выделенной переменной, при которых содержащее ее выражение становится равным нулю;

Замена - заменить указанную переменную содержимым буфера обмена;

Дифференциалы -дифференцировать выражение, содержащее выделенную переменную, по этой переменной (остальные переменные рассматриваются как константы);

Интеграция - интегрировать все выражение, содержащее переменную, по этой переменной;

Разложить на составляющие... - найти несколько членов разложения выражения в ряд Тейлора относительно выделенной переменной;

Преобразование в Частичные Доли - разложить на элементарные дроби выражение, которое рассматривается как рациональная дробь относительно выделенной переменной.

Операции с выделенными матрицами

Операции с выделенными матрицами представлены позицией подменю Матрицы , которая имеет свое подменю со следующими операциями:

Транспонирование- получить транспонированную матрицу;

Инвертирование- создать обратную матрицу;

Определитель- вычислить детерминант (определитель) матрицы.

Результаты символьных операций с матрицами часто оказываются чрезмерно громоздкими и поэтому плохо обозримы.

Операции преобразования

В позиции Преобразованиесодержится раздел операций преобразования, создающий подменю со следующими возможностями:

Фурье- выполнить прямое преобразование Фурье относительно выделенной переменной;

Фурье Обратное- выполнить обратное преобразование Фурье относительно выделенной переменной;

Лапласа- выполнить прямое преобразование Лапласа относительно выделенной переменной (результат - функция переменной s);

Лапласа Обратное - выполнить обратное преобразование Лапласа относительно выделенной переменной (результат - функция

переменной t);

Z - выполнить прямое Z-преобразование выражения относительно выделенной переменной (результат - функция переменной z);

Обратное Z - выполнить обратное Z-преобразование относительно выделенной переменной (результат - функция переменной n) .

Стиль представления результатов вычислений

На наглядность вычислений влияет стиль представления их результатов. Следующая команда позволяет задать тот или иной стиль:

Стиль Вычислений...- задать вывод результата символьной операции под основным выражением, рядом с ним или вместо него (Рисунок 9).

Операции с выделенными переменными - Инвестирование - 1

Рисунок 9.

Примеры символьных операций в командном режиме

Большинство символьных операций легко выполняются, так что ниже мы остановимся лишь на некоторых примерах. Символьная операцияРасчетыобеспечивает работу с математическими выражениями, содержащими встроенные в систему функции и представленными в различном виде: полиномиальном, дробно-рациональном, в виде сумм и произведений, производных и интегралов и т. д. (Рисунок 10).

Операции с выделенными переменными - Инвестирование - 2

Рисунок 10.

Операция стремится произвести все возможные численные вычисления и представить выражение в наиболее простом виде. Она возможна над матрицами с символьными элементами. Производные и определенные интегралы, символьные значения которых вычисляются, должны быть представлены в своей естественной форме.

Особо следует отметить возможность выполнения численных вычислений с повышенной точностью - 20 знаков после запятой. Для перехода в такой режим вычислений нужно числовые константы в вычисляемых объектах задавать с обязательным указанием десятичной точки, например 10.0 или 3.0, а не 10 или 3. Этот признак является указанием на проведение вычислений такого типа.

На Рисунке 10 показаны типовые примеры действия операцииРасчеты.

Здесь слева показаны исходные выражения, подвергаемые символьным преобразованиям, а справа - результат этих преобразований.

ОперацияРасчетыодна из самых мощных. Как видно из Рисунка 6, она позволяет в символьном виде вычислять суммы (и произведения) рядов, производные и неопределенные интегралы, выполнять символьные и численные операции с матрицами.

Эта операция содержит подменю. КомандаСимволическиетут наиболее важная. Назначение других команд очевидно: они нужны, если результат требуется получить в форме комплексного или действительного числа. К примеру, если вы хотите вместо числа p получить 3.141..., используйте командуС плавающей запятой…. В режиме символьных вычислений результат может превосходить машинную бесконечность системы - см. пример на вычисление ехр(1000.0) на Рисунке 10. При этом число точных значащих цифр результата практически не ограничено (или, точнее говоря, зависит от емкости ОЗУ).

ОперацияРазложить на составляющие...возвращает разложение в ряд Тейлора выражения относительно выделенной переменной с заданным по запросу числом членов ряда n (число определяется по степеням ряда). По умолчанию задано п= 6. В разложении указывается остаточная погрешность разложения. На Рисунке 11 представлено применение этой операции для разложения функции Операции с выделенными переменными - Инвестирование - 3 . Минимальная погрешность получается при малых х (см. графическое представление функции и ее ряда).

Операции с выделенными переменными - Инвестирование - 4

Рисунок 11.

Операторы вычисления пределов функций

Для вычисления пределов функций в систему введен символьный оператор limit. Помимо ввода с наборной панелиМатанализ,его в трех формах можно ввести нажатием следующих комбинаций клавиш:

[Ctrl ] L- ввод шаблона оператора вычисления предела функции при х, стремящемся к заданному значению,

[Ctrl ] A- ввод шаблона вычисления предела функции слева от заданной точки,

[Ctrl ] B- ввод шаблона вычисления предела функции справа от заданной точки.

На Рисунке 12 показаны примеры вычисления пределов. При вычислении пределов нужно заполнить шаблоны, входящие в главный шаблон для вычисления пределов, а затем ввести функцию, имя переменной, по которой ищется предел, и значение переменной - аргумента функции.

Операции с выделенными переменными - Инвестирование - 5

Рисунок 12.

Для получения результата установите после блока вычисления предела стрелку с острием, направленным вправо. Предел (если он существует) будет вычислен и появится в шаблоне у острия стрелки. Если функция не имеет предела, вместо результата появится надпись Undefine.

Задание операторов пользователя

Еще одна экзотическая возможность, присущая новым версиям системы MathCAD, - задание новых операторов пользователя. Такой оператор задается практически так же, как функция пользователя, но вместо имени выбирается какой-либо подходящий знак. Например, можно задать оператор деления в виде:

Операции с выделенными переменными - Инвестирование - 6 - задание нового оператора деления;

Операции с выделенными переменными - Инвестирование - 7 - применение функции деления;

Операции с выделенными переменными - Инвестирование - 8 - применение нового оператора деления.

При кажущейся простоте такого задания здесь есть проблемы. Встроенные в систему операторы нельзя переопределить. Поэтому набор доступных знаков для обозначения новых операторов ограничен. Нельзя задать новый оператор деления знаком / (он уже использован), но можно взять знак Операции с выделенными переменными - Инвестирование - 9 , поскольку этот символ системой не используется.

Вторая проблема связана с вводом символа нового оператора. Скорее всего, его напрямую ввести нельзя. Придется воспользоваться типовыми приемами ввода новых символов в документы Windows. Один из этих приемов - использование приложения, выдающего таблицу символов, с возможностью его экспорта из этой таблицы в документ другого приложения (в нашем случае - в документ MathCAD).

Можно также воспользоваться подходящим знаком из набора MATH SYMBOL, имеющегося в составе Шпаргалок, доступ к которым дает Ресурс Центр (Ресурс Центр Þ Справочный стол и краткое руководство Þ Дополнительные математические символы ). На Рисунке 8 показан такой вариант задания нового оператора пользователя. Для перетаскивания знака можно скопировать его в буфер обмена с помощью операции Копировать , а затем ввести в документ, используя операцию Вставка.

После того как оператор задан, его можно использовать, как функцию и как оператор. Примеры показаны на Рисунке 13.

Операции с выделенными переменными - Инвестирование - 10

Рисунок 13.

Для применения нового оператора надо вывести его шаблон с помощью панели математических знаков (она также показана Рисунке 13). В нашем случае следует нажать кнопку Операции с выделенными переменными - Инвестирование - 11 этой панели - она выводит особый шаблон вида § § § . Введите операнды, например 6 и 3 в крайние прямоугольники, а символ оператора - в средний. Поставив после этой конструкции знак равенства, увидите результат - число 2.

Можно задать и другие операторы, например, для работы с одним операндом. Так, вы можете задать оператор для пересчета значения температуры по шкале Цельсия, с тем чтобы определить соответствующее ему значение по шкале Фаренгейта, следующим образом

Операции с выделенными переменными - Инвестирование - 12

Затем, используя кнопку Операции с выделенными переменными - Инвестирование - 13 наборной панели символов отношения, можно выполнять операцию пересчета в виде.

Операции с выделенными переменными - Инвестирование - 14

Есть области математики и физики, где задание новых операторов необходимо, поскольку является частью специфического языка их описания.

← Предыдущая страница | Следующая страница →