Поделиться Поделиться

Методы культивирования анаэробов. 4 страница

Рестрикционный анализ. Данный метод основан на применении фер­ментов, носящих название рестриктаз. Рестриктазы представляют собой эндонук-леазы, которые расщепляют молекулы ДНК, разрывая фосфатные связи не в произвольных местах, а в определенных последовательностях нуклеотидов. Особое значение для методов мо­лекулярной генетики имеют рестриктазы, кото­рые узнают последовательности, обладающие центральной симметрией и считывающиеся одинаково в обе стороны от оси симметрии. Точка разрыва ДНК может или совпадать с осью симметрии, или быть сдвинута относи­тельно нее.

В настоящее время из различных бактерий выделено и очищено более 175 различных рестриктаз, для которых известны сайты (участки) узнавания (рестрикции). Выявлено более 80 различных типов сайтов, в которых может про­исходить разрыв двойной спирали ДНК.

В геноме конкретной таксономической еди­ницы находится строго определенное (генети­чески задетерминированное) число участков узнавания для определенной рестриктазы.

Если выделенную из конкретного микроба ДНК обработать определенной рестриктазой, то это приведет к образованию строго опреде­ленного количества фрагментов ДНК фикси­рованного размера.

Размер каждого типа фрагментов можно узнать с помощью электрофореза в агарозном геле: мелкие фрагменты перемещаются в геле быстрее, чем более крупные фрагменты, и длина их пробега больше. Гель окрашива­ют бромистым этидием и фотографируют в УФ-излучении. Таким образом можно полу­чить рестрикционную карту определенного вида микробов.

Сопоставляя карты рестрикции ДНК, вы­деленных из различных штаммов, можно оп­ределить их генетическое родство, выявить принадлежность к определенному виду или роду, а также обнаружить участки, подвергну­тые мутациям.

Этот метод используется также как началь­ный этап метода определения последователь­ности нуклеотидных пар (секвенирования) и метода молекулярной гибридизации.

Метод молекулярной гибридизации позволяет выявить степень сходства раз­личных ДНК. Применяется при идентифи­кации микробов для определения их точного таксономического положения.

Метод основан на способности двухцепочечной ДНК при повышенной температуре (90 °С) в щелочной среде денатурировать, т. е. расплетаться на две нити, а при понижении температуры на 10 °С вновь восстанавливать исходную двухцепочечную структуру. Метод требует наличия молекулярного зонда.

Зондом называется одноцепочечная мо­лекула нуклеиновой кислоты, меченная ра­диоактивными нуклидами, с которой сравнивают исследуемую ДНК.

Для проведения молекулярной гибридизации исследуемую ДНК расплетают указанным выше способом, одну нить фиксируют на специальном фильтре, который затем помещают в раствор, со­держащий радиоактивный зонд. Создаются ус­ловия, благоприятные для образования двойных спиралей. В случае наличия комплементарности между зондом и исследуемой ДНК, они образу­ют между собой двойную спираль.

Риботипирование и опосредованная транскрипцией амплификация рибосомальной РНК. Последовательность нуклеотидных основа­ний в оперонах, кодирующих рРНК, отлича­ется консервативностью, присущей каждомувиду бактерий. Эти опероны представлены на бактериальной хромосоме в нескольких ко­пиях. Фрагменты ДНК, полученные после об­работки ее рестриктазами, содержат последо­вательности генов рРНК, которые могут быть обнаружены методом молекулярной гибри­дизации с меченой рРНК соответствующего виды бактерий. Количество и локализация копий оперонов рРНК и рестрикционный состав сайтов как внутри рРНК-оперона, так и по его флангам варьируют у различных вида бактерий. На основе этого свойства построен метод риботипирования, который позволяет производить мониторинг выделенных штам­мов и определение их вида. В настоящее вре­мя риботипирование проводится в автомати­ческом режиме в специальных приборах.

Опосредованная транскрипцией амплифика­ция рРНК используется для диагностики сме­шанных инфекций. Этот метод основан на обнаружении с помощью молекулярной гиб­ридизации амплифицированных рРНК, спе­цифичных для определенного вида бактерий. Исследование проводится в три этапа:

1. Амплификация пула рРНК на матрице вы­деленной из исследуемого материала ДНК при помощи ДНК-зависимой РНК-полимеразы.

2. Гибридизация накопленного пула рРНК с комплементарными видоспецифическим рРНК олигонуклеотидами, меченными флюорохромом или ферментами.

3. Определение продуктов гибридизации методами денситометрии, иммунофермент-ного анализа (ИФА).

Реакция проводится в автоматическом ре­жиме в установках, в которых одномоментное определение рРНК, принадлежащих различ­ным видам бактерий, достигается разделе­нием амплифицированного пула рРНК на несколько проб, в которые вносятся компле­ментарные видоспецифическим рРНК мече­ные олигонуклеотиды для гибридизации.

№ 41 Понятие о химиотерапии. История открытия химиопрепаратов.

Химиотерапия — специфическое антимикробное, антипаразитар­ное лечение при помощи химических веществ. Эти вещества обла­дают важнейшим свойством — избирательностью действия против болезнетворных микроорганизмов в условиях макроорганизма.

Основоположником химиотерапии является немецкий химик, лауреат Нобелевской премии П.Эрлих, который установил, что химические вещества, содержащие мышьяк, губительно действу­ют на спирохеты и трипаносомы, и получил в 1910 г. первый химиотерапевтический препарат — сальварсан (соединение мы­шьяка, убивающее возбудителя, но безвредное для микроорга­низма).

В 1935 г. другой немецкий химик Г.Домагк обнаружил среди анилиновых красителей вещество — пронтозил, или красный стрептоцид, спасавший экспериментальных животных от стрепто­кокковой инфекции, но не действующий на эти бактерии вне организма. За это открытие Г.Домагк был удостоен Нобелевс­кой премии. Позднее было выяснено, что в организме происхо­дит распад пронтозила с образованием сульфаниламида, обла­дающего антибактериальной активностью как in vivo, так и in vitro.

Механизм действия сульфаниламидов (сульфонамидов) на микроорганизмы был открыт Р.Вудсом, установившим, что суль­фаниламиды являются структурными аналогами парааминобензойной кислоты (ПАБК), участвующей в биосинтезе фолиевой кислоты, необходимой для жизнедеятельности бактерий. Бакте­рии, используя сульфаниламид вместо ПАБК, погибают.

Первый природный антибиотик был открыт в 1929 г. англий­ским бактериологом А.Флемингом. При изучении плесневого гри­ба Penicillium notatum, препятствующего росту бактериальной культуры, А. Флеминг обнаружил вещество, задерживающее рост бактерий, и назвал его пенициллином. В 1940 г. Г. Флори и Э. Чейн получили очищенный пенициллин. В 1945 г. А Флеминг, Г. Флори и Э. Чейн стали Нобелевскими лауреатами.

В настоящее время имеется огромное количество химиотерапевтических препаратов, которые применяются для лечения за­болеваний, вызванных различными микроорганизмами.

№ 42 Антибиотики. Природные и синтетические. История открытия природных антибиотиков. Классификация ан­тибиотиков по химической структуре, механизму, спект­ру и типу действия. Способы получения.

Антибиотики — химиотерапевтические вещества, продуцируемые микроорганизмами, животными клетками, растениями, а также их производные и синтетические продукты, которые обладают избирательной спо­собностью угнетать и задерживать рост микроорганизмов, а также подавлять развитие злокачественных новообразований.

За тот период, который прошел со времени открытия П.Эрлиха, было получено более 10 000 различных антибиотиков, по­этому важной проблемой являлась систематизация этих препа­ратов. В настоящее время существуют различные классификации антибиотиков, однако ни одна из них не является общеприня­той.

В основу главной классификации антибиотиков положено их химическое строение.

Методы культивирования анаэробов. 4 страница - Инвестирование - 1

Наиболее важными классами синтетических антибиотиков яв­ляются хинолоны и фторхинолоны (например, ципрофлоксацин), сульфаниламиды (сульфадиметоксин), имидазолы (метронидазол), нитрофураны (фурадонин, фурагин).

По спектру действия антибиотики делят на пять групп в зави­симости от того, на какие микроорганизмы они оказывают воз­действие. Кроме того, существуют противоопухолевые антибио­тики, продуцентами которых также являются актиномицеты. Каж­дая из этих групп включает две подгруппы: антибиотики широ­кого и узкого спектра действия.

Антибактериальные антибиотики составляют самую многочисленную группу препаратов. Преобладают в ней антиби­отики широкого спектра действия, оказывающие влияние на представителей всех трех отделов бактерий. К антибиотикам широкого спектра действия относятся аминогликозиды, тетрациклины и др. Антибиотики узкого спектра действия эффектив­ны в отношении небольшого круга бактерий, например полет-миксины действуют на грациликутные, ванкомицин влияет на грамположительные бактерии.

В отдельные группы выделяют противотуберкулезные, противолепрозные, противосифилитические препараты.

Противогрибковые антибиотики включают значитель­но меньшее число препаратов. Широким спектром действия об­ладает, например, амфотерицин В, эффективный при кандидозах, бластомикозах, аспергиллезах; в то же время нистатин, дей­ствующий на грибы рода Candida, является антибиотиком узко­го спектра действия.

Антипротозойные и антивирусные антибиотики на­считывают небольшое число препаратов.

Противоопухолевые антибиотики представлены препара­тами, обладающими цитотоксическим действием. Большинство из них применяют при многих видах опухолей, например митоми-цин С.

Действие антибиотиков на микроорганизмы связано с их спо­собностью подавлять те или иные биохимические реакции, про­исходящие в микробной клетке.

В зависимости от механизма дей­ствия различают пять групп антибиотиков:

1. антибиотики, нарушающие синтез клеточной стенки. К этой группе относятся, например, β-лактамы. Препараты этой груп­пы характеризуются самой высокой избирательностью дей­ствия: они убивают бактерии и не оказывают влияния на клет­ки микроорганизма, так как последние не имеют главного компонента клеточной стенки бактерий — пептидогликана. В связи с этим β -лактамные антибиотики являются наименее токсичными для макроорганизма;

2. антибиотики, нарушающие молекулярную организацию и синтез клеточных мембран. Примерами подоб­ных препаратов являются полимиксины, полиены;

3. антибиотики, нарушающие синтез белка; это наиболее многочисленная группа препаратов. Представителями этой группы являются аминогликозиды, тетрациклины, макроли-ды, левомицетин, вызывающие нарушение синтеза белка на разных уровнях;

4. антибиотики — ингибиторы синтеза нуклеиновых кислот. Например, хинолоны нарушают синтез ДНК, рифампицин — синтез РНК;

5. антибиотики, подавляющие синтез пуринов и аминокислот. К этой группе относятся, например, сульфаниламиды.

Источники антибиотиков.

Основными продуцентами природных ан­тибиотиков являются микроорганизмы, ко­торые, находясь в своей естественной среде (в основном, в почве), синтезируют антибио­тики в качестве средства выживания в борьбе за существование. Животные и растительные клетки также могут вырабатывать некото­рые вещества с селективным антимикробным действием (например, фитонциды), однако широкого применения в медицине в качестве продуцентов антибиотиков они не получили.

Таким образом, основными источниками получения природных и полусинтетических антибиотиков стали:

Актиномицеты (особенно стрептомицеты) — ветвящиеся бактерии. Они синтезиру­ют большинство природных антибиотиков (80 %).

Плесневые грибы — синтезируют природ­ные бета-лактамы (грибы рода Cephalosporium и Penicillium)H фузидиевую кислоту.

Типичные бактерии — например, эубактерии, бациллы, псевдомонады — продуцируют бацитрацин, полимиксины и другие вещества, обладающие антибактериальным действием.

Способы получения.

Существует три основных способа получе­ния антибиотиков:

биологический синтез (так получают при­родные антибиотики — натуральные продук­ты ферментации, когда в оптимальных ус­ловиях культивируют микробы-продуценты, которые выделяют антибиотики в процессе своей жизнедеятельности);

биосинтез с последующими химическими модификациями (так создают полусинтетичес­кие антибиотики). Сначала путем биосинтеза получают природный антибиотик, а затем его первоначальную молекулу видоизменяют путем химических модификаций, например присо­единяют определенные радикалы, в результате чего улучшаются противомикробные и фарма­кологические характеристики препарата;

химический синтез (так получают синте­тические аналоги природных антибиотиков, например хлорамфеникол/левомицетин). Это вещества, которые имеют такую же структуру,

№ 43 Осложнения антибиотикотерапии, их предупреждение.

Как и всякие лекарственные средства, практически каждая группа антимикробных химиопрепаратов может оказывать побочное действие, причем и на макроорганизм, и на микробы, и на другие лекарственные средства.

← Предыдущая страница | Следующая страница →